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Abstract
Given a large convolutional neural network (CNN) with hundreds of

layers, when can the input data be correctly classified? How many layers
does each image require? We propose an architecture with a mid-network
classifier to classify certain images at earlier points in the model. When
the network is very confident about an image, having high activations,
then that individual image will be classified early. The number of compu-
tations and the average number of convolutions will be reduced if certain
images can be classified earlier. In addition, the mid-network classifica-
tion task is more difficult because less features have been extracted at
earlier points in the network. Thus, the output and mid-network classi-
fier will work together to correctly classify each image as fast as possible
while preserving the accuracy. This proposed method has been imple-
mented into well known computer vision architectures, like ResNet and
GoogLeNet Inception. We have achieved large runtime improvements
while limiting the accuracy degradation.

1 INTRODUCTION
Convolutional neural networks (CNN) have vast amounts of parameters in or-
der to learn hundreds of feature maps for each layer [1, 2]. Although the number
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of parameters can be large, convolutional models can perform extremely well
and have progressed from accurate handwritten digit classification to real-time,
efficient object detection [3, 4]. This paper [4] shows the general trend of how
the size of the model increases as the accuracy increases. The winning submis-
sions of the famous ImageNet Large Scale Visual Recognition Challenge have
increased in size as well, producing much larger networks each year to achieve
better performance [5, 6].

Figure 1: Number of layers (dotted line) and test error (bars) for each winning
model of ImageNet Large Scale Visual Recognition Challenge from 2010 to 2015 [6].

The motivation of this paper comes from numerical analysis; we have iterative
techniques to solve all types of complex mathematical operations, including
integration and differential equations [7]. Iterative techniques are great for
modern computers because they can iterate forever. When using these numer-
ical algorithms, thresholds are used to determine when the answer is ’good
enough’. Once the answer is below a certain threshold of precision, the algo-
rithm is finished and the answer is returned. Using these concepts, the same
question was asked in the context of CNNs; “When is the input data processed
enough to be classified correctly?"

We propose a CNN architecture with a checkpoint in order to attempt to
classify the input data earlier in the model. If the input data can be classified,
then the model will stop, and output the results. If not, the model will continue
and use the remaining layers as intended. The network will naturally be more
and less confident about certain images, so only the most confident images
will be classified early. In addition, less features have been extracted at earlier
points in the network, so the checkpoint classifier should perform worse than
the overall output classifier. Thus, the output classifier and the checkpoint
classifier will work together to classify images faster while retaining accuracy.
Theoretically, if certain inputs could be classified earlier in the network, then
the total average number of convolutional layers would be reduced, and the
runtime would be improved while minimizing accuracy degradation.
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2 RELATED WORKS WITH CNNs
Starting with LeNet, with some exceptions, CNNs usually have a basic, pre-
dictable structure [8]. First, a set of convolutional layers to extract features,
then fully connected layers to classify the input based on the features, in that
specific order [2]. This proposed architecture would differ by having a variable
number of layers and a second fully connected classifier network that interrupts
the series of convolutional layers.

In [9], they describe using two independent classifiers to have redundancy in
case one classifier was incorrect. They both perform the classification after the
convolutional layers using the same data, but utilize two different approaches to
protect against an incorrect classification method. In addition, one of the most
famous papers, “Going Deeper with Convolutions," describes the GoogLeNet
Inception network [10]. This network uses two mid-network auxiliary clas-
sifiers to protect against vanishing or exploding gradients and provide some
regularization during training [11]. The network has a traditional set of fully
connected layers for classification but aggregates all output losses to perform
backpropagation. This proposed architecture has additional sets of fully con-
nected layers but they perform a separate classification that does not combine
or contribute to the original output classifier.

3 METHODS
Overview — First, the general context and overview will be discussed and
then each individual step will be described. Python and PyTorch were used
with the built in CIFAR10 and CIFAR100 datasets. These image classification
datasets have ten and 100 output classes, respectively, and have 50,000 training
images and 10,000 test images [12]. For the following sections, the base model
refers to the unchanged, published architecture, whereas the custom model is
the published base model with the extra mid-network classification layer added.

Published Architectures — The first step is training the base model on the
given dataset and saving that model to be used for testing. PyTorch has several
trained architectures built in, but saves models as a dictionary. So, the models
need to be trained from scratch in order to allow new layers to be added after
training and for layers to be added to specific places in the sequential order.

Looking at Table 1, the accuracy of the published networks were not par-
ticularly optimized using learning rate, batch size, or other training hyper-
parameters. Firstly, the graphics card used had memory limitations, so the
larger models needed a small batch size to fit on the card. This prevented the
larger models from generalizing the classification and resulted in overfitting
and high losses on the testset. In addition, the parameters learned during the
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Table 1: Base model testset accuracies with both datasets, CIFAR10/100.

Model CIFAR10 CIFAR100

AlexNet 82.47% 48.24%
VGG-16 92.28% 69.34%
ResNet34 82.25% 52.47%
ResNet50 84.46% 56.78%

InceptionV1 86.00% 61.62%

base model training are used for both models because the base model layers are
unchanged; only a new layer with the mid-network classification is added to the
custom model. Therefore, any accuracy and runtime changes are relative to
the base model and that difference is the important metric. Base models could
have been trained better, but all base model parameters are shared with the
custom model so the results will still show the validity of this proposed method.

Mid-network Classification Model — This model was used as a separate
classifier and trained using mid-network activations extracted from the imple-
mentation layer. After the base model training finished, a custom layer was
added to the base model to write the mid-network activations and correct labels
to a binary file. Multiple layers were tested for each base model and dataset so
activations from each specific layer were collected and stored for training. The
layers were chosen to be roughly 40% to 60% of the overall network such that
some features have been extracted for a successful classification, but enough
layers remain to improve the runtime.

This model was trained on all 50,000 trainset inputs and used a 90%−5%−
5% train, development, and testset split, respectively. The network used two
fully connected layers, size 2,048 and 1,024, and each layer used a dropout of
70% and batch normalization [19, 20, 21, 11]. The second layer outputs ten or
100 classes depending on which dataset was being used [22]. For the input, this
architecture was used for all base models, so the feature map sizes will change
accordingly. Thus, average pooling was used to downsize the feature maps,
choosing a pooling size to have about 3,000 to 4,000 values after flattening the
feature maps. Using about 3,000 to 4,000 input values was enough information
to classify the inputs but still retain a fairly small overall network. Although,
there were 1 or 2 cases that used 4,608 as the input size because due to the
number of feature maps, ∼4,600 was the closest to the desired range. Although
marginally better classification could be achieved with individual optimization
for each base model and dataset combination, this architecture performed well
and we decided to keep it constant for more consistent results.

4



Figure 2: Mid-network classification model implementation into VGG-16 base
architecture as checkpoint classifier [13]. For the functions, the activation function
was Rectified linear unit (ReLU); Adam optimizer was used with a weight decay of

4 ∗ 10−5; the loss function was Cross Entropy Loss [14, 15, 16]. Using Adam
optimizer helped the model converge faster than traditional stochastic gradient
descent [17]. The final output layer did not use a softmax function because the

unrestricted activation values were used to find the threshold value [18].

Parameter Search — A maximum value threshold is used to determine if the
mid-network classification will be kept or not. The mid-network classification
model will attempt to classify every image, but only activations above the max
threshold will be classified early. In addition to the max threshold, the number
of inputs let in and processed early was also optimized as a threshold, this
percentage is the let in threshold. The best max value threshold is found for
each let in threshold for the given layer and base model. At a given let in
threshold, the “best" max value was found by iterating through values, at a
specified step, and finding the percentage of images above the max threshold
and the percentage correct and above the max threshold. Those values were
divided to find the relative accuracy of inputs above the let in threshold.

Although, in order for a max threshold to be optimized for each let in thresh-
old, the percentage of images above the max threshold is constrained between
the let in threshold plus 10% and the let in threshold. Thus, as less images are
let in, mid-network classification model can be more selective so relative accu-
racy increases. The network chooses the highest activations, and only classify
images it is the most confident about. Conversely, as more images are let in,
the network becomes less confident and the relative accuracy decreases. This
is a helpful property because the let in threshold will converge to letting in less
images, thus optimizing down to the let in threshold for each constrained range.
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Timed Testing — For the final results, the base and custom models were
tested against each other to observe the accuracy and runtime changes. The
custom layer added includes the mid-network classification network and max
value threshold to determine if the given image will be classified early. The
models were tested using the CIFAR10/100 testset and ran alternating sets of
epochs to ensure the computer switches tasks. A batch size of one was used for
all testing to simulate real world scenarios. Also, two warm up epochs of each
model are run before testing to warm up the gpu and system. The data was
collected using two sets of five epochs, alternating between each set. Some of
the smaller models were tested with three sets of five epochs because the faster
runtimes were less consistent.

Implementation — At the specified layer, the image tensor is first average
pooled down to the desired image size, passed through the classification model,
and the max activation is checked against the max value threshold. The custom
layer will return the input image tensor, the output of the classification model,
and a boolean value. If the max activation is higher than the threshold, the
boolean value will toggle to true. In the forward function of the model, the
boolean is checked and if true, the model will return the output. If not, the
input image tensor is unchanged and is passed into the next layer like usual.

4 RESULTS AND DISCUSSION
In this section, the runtime and accuracy changes will be shown from all mod-
els to display the validity of the proposed method. Multiple layers were tested
for each model on both datasets, ranging from various points in the networks
to find the best position for a classification checkpoint. Sections of this data
will be presented and an online appendix of all layers and models is available
by request. The accuracy changes were measured by subtracting from the base
model accuracy to observe difference and runtime changes were measured by
dividing the base model and custom model time to observe percent change.
CIFAR10/100 results, shown in table two below, for an individual layer imple-
mented in AlexNet, VGG-16, and ResNet50 [22, 23, 24]. The progression of
runtime and accuracy changes can be observed for the series of let in thresh-
olds. Looking at AlexNet, the accuracy drops off as more images are let in on
CIFAR10, but the accuracy is very stable on CIFAR100 with slight accuracy
improvements. The runtime did not improve very much because it is a very
small model, it takes more than 80% of images to be classified early to pro-
vide a benefit. Despite being a small model, only five convolutional layers, the
mid-network classification performed well with limited accuracy degradation
on both datasets.
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Table 2: Runtime and accuracy changes with AlexNet, VGG-16 and ResNet50 on
both datasets on select layers. For accuracy changes, a positive value is an increase

in overall accuracy, whereas a negative value is a decrease.

Layer 14 Layer 20 Layer 26

Dataset Let-In
Thres.

Accuracy
Change

Runtime
Change

Let-In
Thres.

Accuracy
Change

Runtime
Change

Let-In
Thres.

Accuracy
Change

Runtime
Change

CIFAR10 0.600 0.480 -4.19% 0.200 -0.180 -0.60% 0.102 -0.020 -0.36%

0.700 0.310 -0.91% 0.300 -0.580 3.46% 0.201 -0.190 5.54%

0.800 0.190 1.70% 0.400 -1.010 6.90% 0.300 -0.590 10.66%

0.900 -0.060 4.63% 0.502 -1.710 11.16% 0.400 -1.010 15.80%

1.000 -1.080 7.84% 0.601 -2.800 15.36% 0.501 -1.760 20.68%

CIFAR100 0.600 0.880 -6.75% 0.200 -1.610 -1.04% 0.102 -1.070 -0.71%

0.700 1.040 -3.56% 0.300 -2.890 2.76% 0.200 -2.830 4.72%

0.800 1.220 -0.32% 0.400 -4.520 6.60% 0.300 -5.110 10.22%

0.901 0.920 3.50% 0.500 -6.640 10.88% 0.401 -7.680 15.23%

1.000 0.240 7.60% 0.600 -9.110 15.54% 0.501 -10.81 20.74%

Comparatively, VGG-16 and ResNet50 are larger networks, thirteen and 49
convolutional layers respectively. Thus, there is a greater potential for runtime
improvements, both models needing only 20–30% of images to observe runtime
improvements. A general trend can be seen, as more images are classified early,
the overall accuracy decreases. This is expected because the output classifier is
larger and more features have been extracted after more convolutional layers.

With VGG-16, the runtime has much larger improvements but the accu-
racy degrades much faster compared to AlexNet. The accuracy degradation
is very steep in CIFAR100, almost 10% accuracy loss with only 60% classified
early. Although, larger runtime improvements can also be observed; VGG-16
achieving 15% faster results compared to the base model. Overall, VGG-16
did not perform well due to the large accuracy degradation, but there are large
potential runtime improvements.

Similar to VGG-16, ResNet50 displayed very promising runtime improve-
ments with over 20% faster on both datasets with only 50% classified early.
Although, the classification was not very accurate and produced significant
amounts of accuracy degradation. On the CIFAR10 dataset the degrada-
tion was much less, but became very high on CIFAR100. For VGG-16 and
ResNet50, due to graphics card limitations, small batch sizes were used: 64
& 100, respectively. Thus, base models did not train very well and negatively
impacted mid-network classification as a result. Nevertheless, both still demon-
strate potentially large runtime improvements of a mid-network classifier.

With 33 convolutional layers, ResNet34 provides a deep enough network
to accurately train and provide sufficient depth to improve runtime [24]. The
mid-network classification was implemented after the fourteenth, twentieth,
and 26th convolutional layers. Table 3 above shows the full results of each layer
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Table 3: Runtime and accuracy changes with AlexNet, VGG-16 and ResNet50 on
both datasets on select layers. For accuracy changes, a positive value is an increase

in overall accuracy, whereas a negative value is a decrease.

ResNet34 CIFAR100 Results Per Layer
Layer 14 Layer 20 Layer 26

Let-In
Thres.

Accuracy
Change

Runtime
Change

Let-In
Thres.

Accuracy
Change

Runtime
Change

Let-In
Thres.

Accuracy
Change

Runtime
Change

0.000 0.000 -7.76% 0.000 0.000 -7.12% 0.000 0.000 -8.99%
0.136 0.070 -3.87% 0.135 -0.040 -4.02% 0.102 -0.010 -6.27%
0.218 0.180 -1.02% 0.203 -0.100 -2.42% 0.255 0.030 -6.00%
0.301 0.160 2.38% 0.303 -0.060 -1.22% 0.348 0.050 -4.49%
0.416 0.170 5.783% 0.408 0.000 0.059% 0.415 0.020 -3.94%
0.501 0.300 7.21% 0.505 -0.060 2.43% 0.514 0.020 -2.00%
0.604 0.430 11.46% 0.601 -0.070 3.57% 0.612 0.060 -2.18%
0.701 0.480 14.75% 0.701 -0.130 3.79% 0.701 0.010 -0.09%
0.801 0.740 18.83% 0.800 -0.080 7.44% 0.801 0.160 0.02%
0.901 0.640 24.33% 0.900 -0.070 9.54% 0.901 0.180 1.93%
1.000 -0.680 36.52% 1.000 -0.380 21.60% 1.000 -0.290 10.43%

tested at each ∼10% let in threshold interval. The sequence of the runtimes can
be seen, each layer requiring more images in order to overcome the classification
cost. Moreover, each layer has progressively faster runtimes as the secondary
clarifier is implemented earlier in the network.

Starting from the right, layer 26 exhibited adequate classification with no
accuracy loss. Although, it was too far into the network to produce major
runtime improvements, needing about 80% of early classification to offset the
cost of the secondary classifier. Layer 20 addressed these issues with negligible
accuracy loss while providing much larger runtime improvements. With a let
in threshold of 90%, layer 20 had a 0.07% loss of accuracy and a 9.5% faster
runtime. Lastly, layer 14 was still able to perform an excellent classification
while greatly increasing the runtime. In addition, the accuracy did not degrade
until the let in threshold was 100%; with all images being classified early, the
network is 36% faster and 0.68% lower accuracy.

Similar to ResNet34, the InceptionV1 network performed exceptionally well
providing large runtime improvements and very small accuracy degradation
[10]. Three separate points were tested, after the 4a inception block, 4c incep-
tion block, and 4e inception block. Figure 3 above presents the results for each
layer. For the runtime, the results show a progressively greater improvement as
the images are classified at earlier points in the network. Each block produces a
faster runtime then the later blocks because there are more convolutions to be
skipped. In addition, the runtime decreases as more images are let in because
the average number of convolutions is reduced; all lines trend upwards as the
let in threshold increases. As seen on the other models, the cost of adding a
mid-network classification to a model is about 5% of the runtime and about
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Figure 3: InceptionV1 results on CIFAR100 dataset after the 4a, 4c, and 4e
inception blocks. The InceptionV1 network utilized blocks with multiple

convolutions known as an inception block. The base architecture has a total of nine
inception blocks; reference paper for architecture diagram [10].

ten to 40% of images need to be classified early to overcome this cost.
For the accuracy, the trends are also as expected in which each block’s accu-

racy degrades as more images are let in and the later blocks degrade less than
the earlier blocks. InceptionV1 performed very well overall with a maximum
of 15% to 55% faster runtimes and less than 4% accuracy degradation at the
highest let in threshold. Like AlexNet and ResNet34, the mid-network classi-
fication was very accurate and the accuracy loss remained negligible, or even
slightly positive, until very high let in thresholds. At around 0.5% of accuracy
loss, block 4a’s runtime improved by 25%, block 4c by 15%, and block 4e by
6%, at 70%, 80%, and 90% let in threshold respectively.

5 CONCLUSION
We have investigated the use of an independent, secondary classifier imple-
mented into published architectures for faster classification on CIFAR10/100
datasets. These findings indicate that mid-network classification can give a
marginal increase in accuracy, while at the same time, significantly reducing
the overall runtime of the model. The specific implementation in the network
does need to be surveyed to produce the best results, providing enough infor-
mation for the classification and enough layers to reduce convolutions. Further
investigation should be conducted to assess which types of images or classes
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benefit from the secondary classifier, if there is any pattern or predictability
to the classification improvement. Although these concepts were not verified
using the expansive ImageNet dataset, there is sufficient evidence to suggest
similar results will be yielded. Therefore, additional experiments should be
carried out to investigate the utilization of multiple independent classifiers.
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